

# Meeting the Energy Efficiency and Financial Challenges in IT

Liam Newcombe

BCS Data Centre Specialist Group Secretary



### Meeting the Energy and Financial Challenges in IT

### Recognising the Problem



### Recognising the Problem Energy

#### **Energy and Cost Crisis**

- Data Centres: 1.9% of UK grid power
- Power Availability & Cost
- Cooling Capacity
- "90% of business will be impacted by power issues within 5 years" EPA



### Recognising the Problem Business

#### **Business Demand for IT Services**

- Rising Demand
- Rising Impact
- Application Design



#### Recognising the Problem – Energy & Business

#### **Environmental Accounting**

- Green House Gas Accounting (GHG)
- Kyoto
- EU Emissions Trading Scheme (EU ETS)
- Mandatory Cap & Trade
- Brand Value
- Public Pressure



#### Recognising the Problem – Energy & Business

#### IT Costs are fundamentally changing

- Demand > Moore's Law (1)
- Servers cheaper and faster
- Servers using more power
- Power bill > Server Cost
- Data Centre Infrastructure > Server Cost



#### Recognising the Problem – Energy & Business

#### **Business Cost & Management Accounting**

- Understand the Infrastructure and energy costs of IT systems
- Data Centre capital and power cost is currently "general overhead"
- This must change as costs rise and new costs arrive (Cap and Trade)
- Start carbon accounting now
- Carbon accounting will impact the supply chain



### Recognising the Problem - Business

#### **Communication failures**

- CXO
- Business Owner
- IT Architect
- IT Operations
- Mechanical & Electrical



#### Server Power vs. Workload





#### Server Power vs. Workload



# Recognising the Problem - Technology Power Loss Chain Power Station – Data Centre



# Recognising the Problem - Technology Power Loss Chain Data Centre - Equipment



# Recognising the Problem - Technology Power Loss Chain Data Centre - Servers



#### Recognising the Problem - Technology Power Loss Chain - Data Centre - CPU



#### Recognising the Problem - Technology Power Loss Chain - Data Centre - CPU Used



#### Recognising the Problem - Technology Power Loss Chain - Fossil Fuel - CPU Used





#### **Data Centre Power Transfer function**

 Data Centres use much of their power just being turned on





#### **Data Centre Power Transfer function**

How does this translate into efficiency?





#### **Green Data Centre = Unreliable?**

- This is a myth
- Power or Cooling constrained Data Centres have higher risks
- High Power density gives increased risk



### Meeting the Energy and Financial Challenges in IT

### How the Industry is Reacting



### How the Industry is Reacting – Research & Policy

#### **Energy Research and Standards**

- EPA report to Congress
- ASHRAE
- EU Data Centre Code of Conduct
- UK Mandatory Cap and Trade
- UK Market Transformation Program
- The Green Grid
- Intellect UK
- BCS Carbon Footprint working group



#### Why is IT equipment so inefficient?

- Historically equipment was selected based only on price : performance
- Redundant Components
- Vendors responded to this demand through the entire chain
- Manufacturing and Disposal ~75%



# Many new products and services from vendors in all parts of IT and M&E

- Products are pitched within their own layer and compared within that layer
- Lack of generally accepted metrics and models to compare equipment
- Vendors creating their own, proprietary metrics to present their equipment in best light
- Near impossible for IT user to effectively compare servers / UPS etc in their scenario



# But Virtualisation (insert name of current high margin product) will save us!

- No it wont, virtualisation is a one shot deal with diminishing return
- Same applies to many other 'savior' technologies
- High power density 'solutions' such as blades just move the problem around



# New breed of equipment based on energy efficiency now that there is market demand

- New servers present new challenges as well as solutions
- Power demands will still rise
- Propose target to increase performance without increasing power demand of servers
- IT equipment labeling



### How the Industry is Reacting – Metrics

#### Metrics, how do I choose equipment?

- Sun SWAP
- SPECPower & Energy Star
- What about Data Centre Infrastructure?
- Broader measurement and analysis tools and standards



### Meeting the Energy and Financial Challenges in IT

# Required Changes in our Industry



### Required Changes - Technology

# New breed of Data Centre designs and equipment

- Fresh air cooling
- DG & CHP, absorptive chillers
- High efficiency UPS etc
- Fully enclosed air flow



#### **Choosing a Design Reliability**

Data Centre specification excessive 'best practice', 'best you can afford' not based on requirements

Data Centre specification dominated by 5% most critical systems, overkill for the other 95%



#### **Achieving Real Reliability**

### Multiple Tier2/3 sites can reduce cost and improve availability

| Tier | Redundancy | Annual<br>Downtime | Single Site<br>Availability | Dual Site<br>Availability |
|------|------------|--------------------|-----------------------------|---------------------------|
| 1    | N          | 28.8               | 99.7%                       | 99.999%                   |
| 2    | N+1        | 22                 | 99.75%                      | 99.999%                   |
| 3    | N+1 / N+2  | 1.6                | 99.98%                      | 99.99999%                 |
| 4    | 2(N+1)     | 0.4                | 99.995%                     | 99.9999998%               |



### There is an optimum reliability for any service defined by minimum overall cost





### Problems with Design Reliability

High Design Reliability can be an illusion

10% Hardware

**40%-80% Human error** 

Failures Happen, Accept this and Design for it

Fault tolerance

**Fault containment** 

Maximum independence

Not more monolithic hardware



# DCSG energy and cost models for IT equipment and data centres

- What does a model need to include?
  - IT workloads
  - Server models
  - Data Centre Infrastructure Models



# DCSG energy and cost models for IT equipment and data centres

- Open Source, public review, no need for multiple models, unbiased
- What can a model tell you?
  - Efficiency of existing equipment
  - Efficiency of proposed new equipment
  - Benefits of virtualisation
  - Impacts of data centre operational process



#### What has our analysis told us about Date Centres?

DC / M&E costs dominate IT equipment costs





## What has our analysis told us about DC Operations?

- Data Centres are not individual components, they are complex systems, view them as such
- Component Improvements can be masked
- Consider Merging your IT and M&E groups now



# What has our analysis told us about DC Operations?

- There is considerable capacity locked up in your current data centre
- Stop nameplate provisioning
- Retrofit with airflow control, blanking plates and contained hot / cold aisle



# What has our analysis told us about DC Operations?

- Buy servers by Performance / Watt not Performance / £
- One-App per server buy the lowest power servers
- Build lower Tier data centres and achieve reliability at the systems / network level
- Build modular data centres to keep the utilisation levels high
- Crop Rotate your data centre to sweep out the disused equipment



#### What has our analysis told us about Data Centres?

Green is Good Business





Thank you
Find out more
http://dcsg.bcs.org